
(12) United States Patent
Goodhue et al.

(54) MEMORY ACCELERATOR FOR ARM
PROCESSOR PRE-FETCHING MULTIPLE
INSTRUCTIONS FROM CYCLICALLY
SEQUENTIAL MEMORY PARTITIONS

(75) Inventors: Gregory K Goodhue, San Jose, CA
(US); Ata R Khan, Saratoga, CA (US);
John H. Wharton, Palo Alto, CA (US);
Robert Michael Kallal, Longmont, CO
(US)

(73) Assignee: Koninklijke Philips Electronics N.V.,
Eindhoven (NL)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 642 days.

(21) Appl. No.: 09/ 788,691

(22) Filed: Feb.20,2001

(65) Prior Publication Data

US 2002/0116597 Al Aug. 22, 2002

(51) Int. Cl.7 .. G06F 9/ 06
(52) U.S. Cl. 712/207; 711/173; 712/205;

712/206

(58) Field of Search 711/173; 712/205,
712/206, 207

(56) References Cited

U.S. PATENT DOCUMENTS

4,755,933 A *
5,263,003 A *
5,634,025 A *
5,659,713 A

2002/0116579 Al

7/1988
11/1993
5/1997
8/1997
8/2002

Teshima et al. 711/157
Cowles et al. 365/230.03
Breternitz, Jr. 712/207
Goodwin et al. 711/157
Goodhue et al. 711/120

120a

I IIIII IIIIIIII Ill lllll lllll lllll lllll lllll lllll lllll lllll 1111111111 111111 11

EP

US006799264B2

(10) Patent No.:

(45) Date of Patent:

US 6,799,264 B2
Sep.28,2004

FOREIGN PATENT DOCUMENTS

0180236 5/1986

* cited by examiner

Primary Examiner-Kenneth S. Kim
(74) Attorney, Agent, or Firm-Aaron Waxler

(57) ABSTRACT

A memory accelerator module buffers program instructions
and/or data for high speed access using a deterministic
access protocol. The program memory is logically parti­
tioned into 'stripes', or 'cyclically sequential' partitions, and
the memory accelerator module includes a latch that is
associated with each partition. When a particular partition is
accessed, it is loaded into its corresponding latch, and the
instructions in the next sequential partition are automatically
pre-fetched into their corresponding latch. In this manner,
the performance of a sequential-access process will have a
known response, because the pre-fetched instructions from
the next partition will be in the latch when the program
sequences to these instructions. Previously accessed blocks
remain in their corresponding latches until the pre-fetch
process 'cycles around' and overwrites the contents of each
sequentially-accessed latch. In this manner, the performance
of a loop process, with regard to memory access, will be
determined based solely on the size of the loop. If the loop
is below a given size, it will be executable without over­
writing existing latches, and therefore will not incur memory
access delays as it repeatedly executes instructions con­
tained within the latches. If the loop is above a given size,
it will overwrite existing latches containing portions of the
loop, and therefore require subsequent re-loadings of the
latch with each loop. Because the pre-fetch is automatic, and
determined solely on the currently accessed instruction, the
complexity and overhead associated with this memory
acceleration is minimal.

13 Claims, 1 Drawing Sheet

120b 120d

oo 04 08 ·oc
40 44 48 4C

80 84 88 BC

10 14 18 1C

50 54 58 5C

90 94

20 24

60 64

30 34 38 3C

70 74 78 7C

A[5:4]

U.S. Patent Sep.28,2004 US 6,799,264 B2

Interrupt 110
ARM Processor Controller Other

101

200
SRAM Memory Peripheral Bus Arbiter Controller Accelerator Bridge

120
64KB 256KB Peripheral
SRAM Flash Ports

FIG.1

/ 120a / 120b / 120c / 120d
00 04 08 ·oc 10 14 18 1C 20 24 28 2C 30 34 38 3C
40 44 48 4C 50 54 58 SC 60 64 68 6C 70 74 78 7C

Prefetch 80 84 88 8C 90 94
- co C4 r-",

...
-... .., ,, "'

---'
--,

260

A[5:4]

13

A[5:4
220

A[17:6
210

+1 QuadrantO Quadrant1 Quadrant2 Quadrant3

oT
l= Address

LatchO

I�
�

l===
IAL
0 A[5:4

230 ---.:::: �

Address Address
= c=

Latch1 - == Latch2

,7 "'- 7

Instruction ,... IAL ,... Instruction IAL
LatchO f- 1 Latch1 2
J 1L L - -

L l L l
- �

i--1 Address c=
i-,

""S .7

Instruction
Latch2
J 1 1

Latch3

l�7

IAL ,., Instruction
3

- -
Latch4
J L J l

A[3

A[17

A[5

:2]=:= FJword MuxF ==l Word Mux F FJword MuxF �Word Mux

:6]�' II "=?
I "7 I

/?
l 2rul Jl ., Quadrant Mux I :4) .,

240/ 250/ 101 >--- Jl---- Instruction (A[17:2])
FIG.2

US 6,799,264 B2

1

MEMORY ACCELERATOR FOR ARM

PROCESSOR PRE-FETCHING MULTIPLE

INSTRUCTIONS FROM CYCLICALLY

SEQUENTIAL MEMORY PARTITIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to concurrently filed U.S.
patent application "CYCLICALLY SEQUENTIAL
MEMORY PREFETCH", Ser. No. 09/788692 (Attorney
Docket US018012).

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of electronic processing
devices, and in particular to a processing system that uses
the Advanced RISC Machine (ARM) architecture and flash
memory.

2. Description of Related Art

The Advanced RISC Machine (ARM) architecture is
commonly used for special purpose applications and
devices, such as embedded processors for consumer
products, communications equipment, computer
peripherals, video processors, and the like. Such devices are
typically programmed by the manufacturer to accomplish
their intended function. The program or programs are gen­
erally loaded into "read-only" memory (ROM), which may
be permanent (masked-ROM), or non-volatile (EPROM,
EEPROM, Flash), which may be co-located or external to
the ARM processor. The read-only memory typically con­
tains the instructions required to perform the intended
functions, as well as data and parameters that remain con­
stant; other, read-write memory (RAM) is also typically
provided, for the storage of transient data and parameters. In
the ARM architecture, the memory and external devices are
accessed via a high-speed bus.

To allow the manufacturer to correct defects in the
program, or to provide new features or functions to existing
devices, or to allow the updating of the 'constant' data or
parameters, the read-only memory is often configured to be
re-programmable. "Flash" memory is a common choice for
re-programmable read-only memory. The contents of the
flash memory are permanent and unchangeable, except
when a particular set of signals is applied. When the
appropriate set of signals is applied, revisions to the program
may be downloaded, or revisions to the data or parameters
may be made, for example, to save a set of user preferences
or other relatively permanent data.

The time required to access programs or data in a flash
memory, however, is generally substantially longer than the
time required to access other storage devices, such as
registers or latches. If the processor executes program
instructions directly from the flash memory, the access time
will limit the speed achievable by the processor.
Alternatively, the flash memory can be configured primarily

2

the program instructions into the higher speed memory. In a
conventional cache system, the program memory is parti­
tioned into blocks, or segments. When the processor first
accesses an instruction in a particular block, that block is

5
loaded into the higher speed cache memory. During the
transfer of the block of instructions from the lower speed
memory to cache, the processor must wait. Thereafter,
instructions in the loaded block are executed from cache,
thereby avoiding the delay associated with accessing the
instructions from the slower speed memory. When an

10 instruction in another block is accessed, this other block is
loaded into cache, while the processor waits, and then the
instructions from this block are executed from cache.
Typically, the cache is configured to allow the storage of
multiple blocks, to prevent "thrashing", wherein a block is

15 continually placed into cache, then overwritten by another
block, then placed back into cache. A variety of schemes are
available for optimizing the performance of cache systems.
The frequency of access to a block is conventionally used as
criteria for determining which blocks of cache are replaced
when a new block is to be loaded into cache. Additionally,

20 look-ahead techniques can be applied to predict which
block, or blocks, of memory will be accessed next, and
pre-fetching the appropriate blocks into cache, to have the
instructions in cache when required.

Conventional cache management systems are relatively
25 complex, particularly if predictive techniques are employed,

and require a substantial overhead for maintaining, for
example, the access frequency of each block, and other
cache prioritizing parameters. Also, the performance of a
cache system for a particular program is difficult to predict,

30 and program bugs caused by timing problems are difficult to
isolate. One of the major causes of the unpredictability of
cache performance is the 'boundary' problem. The cache
must be configured to allow at least two blocks of memory
to be in cache simultaneously, to avoid thrashing when a

35
program loop extends across a boundary between blocks. If
a change is made such that the loop no longer extends across
the boundary, cache will be available to contain other blocks,
and thus the performance will be different in each case. Such
a change, however, may be a side-effect of a completely
unrelated change that merely changed in size, and thereby

40 moved the loop's location in memory. Similarly, the number
of times a loop is executed may be a function of the
parameters of a particular function. As such, the aforemen­
tioned access frequency parameter associated with each
block may differ with different user conditions, thereby

45 resulting in a different allocation of cache for each running
of the same program.

Because ARM-based microcontrollers are commonly
used for high performance applications, or time critical
applications, timing predictability is often an essential

50 characteristic, which often renders a cache-based memory
access scheme infeasible. Additionally, cache storage typi­
cally consumes a significant amount of circuit area, and a
significant amount of power, rendering its use impractical
for low-cost or low-power applications, where microcon-

55
trollers are commonly used.

as a permanent storage means that provides data and pro­
gram instructions to an alternative, higher speed, memory
when the device is initialized. Thereafter, the processor
executes the instructions from the higher speed memory.
This redundant approach, however, requires that a relatively
large amount of higher speed memory be allocated to 60

program storage, thereby reducing the amount of higher
speed memory being available for storing and processing
data.

BRIEF SUMMARY OF THE INVENTION

It is an object of this invention to provide a microcon-
troller memory architecture that provides an efficient
memory access process. It is a further object of this inven­
tion to provide a microcontroller memory architecture that
provides an efficient memory access process with a minimal
amount of overhead and complexity. It is a further object of
this invention to provide a microcontroller memory archi­
tecture that provides an efficient memory access process To reduce the amount of redundant high speed memory

required for executing the program instructions, while still
providing the benefits of higher speed memory, cache tech­
niques are commonly used to selectively place portions of

65 with highly predictable performance.
These objects and others are achieved by providing a

memory accelerator module that buffers program instruc-

US 6,799,264 B2

3

tions and/or data for high speed access using a deterministic
access protocol. The program memory is logically parti­
tioned into 'stripes', or 'cyclically sequential' partitions, and
the memory accelerator module includes a latch that is
associated with each partition. When a particular partition is
accessed, it is loaded into its corresponding latch, and the
instructions in the next sequential partition are automatically
pre-fetched into their corresponding latch. In this manner,
the performance of a sequential-access process will have a
known response, because the pre-fetched instructions from
the next partition will be in the latch when the program
sequences to these instructions. Previously accessed blocks
remain in their corresponding latches until the pre-fetch
process 'cycles around' and overwrites the contents of each
sequentially-accessed latch. In this manner, the performance
of a loop process, with regard to memory access, will be
determined based solely on the size of the loop. If the loop
is below a given size, it will be executable without over­
writing existing latches, and therefore will not incur memory
access delays as it repeatedly executes instructions con­
tained within the latches. If the loop is above a given size,
it will overwrite existing latches containing portions of the
loop, and therefore require subsequent re-loadings of the
latch with each loop. Because the pre-fetch is automatic, and
determined solely on the currently accessed instruction, the
complexity and overhead associated with this memory
acceleration is minimal.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is explained in further detail, and by way of
example, with reference to the accompanying drawings
wherein:

FIG. 1 illustrates an example block diagram of a micro­
controller having a memory accelerator in accordance with
this invention.

FIG. 2 illustrates an example block diagram of a memory
accelerator and memory structure in accordance with this
invention.

Throughout the drawings, the same reference numerals
indicate similar or corresponding features or functions.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 illustrates an example block diagram of a micro­
controller 100, comprising a processor 110 that is configured
to execute program instructions and/or access data that are
located in a flash memory 120. For ease of reference and
understanding, this invention is presented using the para­
digm of an ARM processor 110 that communicates with the
memory 120 and other components via a high performance
bus 101. Also for ease of reference, the paradigm of loading
program instructions is used to illustrate the principles of the
invention. As will be evident to one of ordinary skill in the
art, the principles presented in this disclosure are applicable
to other computer memory architectures and structures as
well; and, the principles presented are equally applicable to
the loading of either program instruction or data from
memory. The term data item is used herein to refer to either
a program instruction or datum.

4

110. The memory accelerator 200 is configured to store
recently accessed instructions, so that repeated accesses to
the same instructions, for example, instructions in a loop
structure, can be retrieved from the accelerator 200, without

5 requiring subsequent accesses to the memory 120.
Additionally, the memory accelerator 200 is configured to
have multiple parallel access paths to the memory 120, and
this parallelism allows the accelerator 200 to buffer the
slower access to the memory 120 during accesses to sequen-

10
tial instructions in the memory 120.

Copending U.S. patent application, "CYCLICALLY
SEQUENTIAL MEMORY PREFETCH", Ser. No.
09/788692, filed Feb. 17, 2001 for Gregory K. Goodhue, Ata
R. Khan, and John H. Wharton, Attorney Docket US018012,
presents a memory access scheme that allows for efficient

15 memory access with minimal complexity and overhead, and
is incorporated by reference herein. FIG. 2 illustrates an
example embodiment of the memory accelerator 200 and a
corresponding logical structuring of the memory 120 that is
based on the principles presented in this copending appli-

20 cation.
As illustrated in FIG. 2, the memory 120 is logically

partitioned into four quadrants 120a-120d. These quadrants
form "stripes" or "cyclically sequential" partitions of the
address space of the memory 120 (of FIG. 1). In this

25 example, each instruction is assumed to be a 32-bit word,
organized as four 8-bit bytes. Example byte-addressed
sequential instructions (00, 04, . . .) are illustrated within
each partition 120a-120d, using hexidecimal notation. As
illustrated, each quadrant contains "lines" of four sequential

30 words (sixteen bytes, or 128 bits), and the addresses in each
quadrant sequentially follow each other. That is, for
example, partition 120a contains words at addresses 00, 04,
08, and OC; the next set of four words, at addresses 10, 14,
18, and lC, are in the next partition 120b. The last partition

35
contains words at addresses 30, 34, 38, and 3C, and the next
set of four words, at addresses 40, 44, 48, and 4C are located
in the first quadrant 120a. The term "segment" is used
hereinafter in lieu of "line", to indicate a single set of
continuous memory locations from the first memory location
of the first partition to the last memory location of the last

40 partition. That is, for example, the first segment corresponds
to addresses 00 through 3F; the next segment corresponds to
word addresses 40 through 7F; and so on.

The number of partitions, and the number of words per
partition, is determined based on the relative speed of the

45 processor 110 (of FIG. 1) and the access speed of the
memory 120, such that the time to load N instructions from
a partition of the memory is less than the time required to
execute the N instructions. Preferably, the number of parti­
tions and the number of words per partition are each a power

50 of two, so that each partition and each instruction can be
accessed based on a subset of the bits forming the address of
the instructions in the memory 120. For ease of reference
and understanding, the example four-quadrant, four-words­
per-partitioning structure of FIG. 2 is discussed hereinafter,

55
without implying a limit to the intended scope of this
invention to this partitioning.

In accordance with this invention, a memory accelerator
200 is located between the bus 101 and the memory 120, and
is configured to isolate the performance of the processor 110 60

from the performance of the memory 120. The accelerator
200 contains memory elements that have a substantially
faster access time than the memory 120. Preferably, the
memory access time for retrieving instructions from the
accelerator 200 is less than the time required for the pro- 65

cessor 110 to execute the instruction, so that the memory
access time does not affect the performance of the processor

An instruction latch 220 is associated with each of the
quadrants 120a-d. When the processor requests access to an
instruction at a particular memory address, the set of four
words containing that address is retrieved from the appro­
priate quadrant 120a-d and stored in the corresponding
instruction latch 220. The requested instruction is subse-
quently provided to the processor 110, via the bus 101 (of
FIG. 1) from the latch 220. If the latch 220 already contains
the requested instruction, from a prior load of the instruction
from the memory 120, the instruction can be provided
directly to the processor 110 from the latch 220, and an
access to the memory 120 can be avoided.

US 6,799,264 B2

5
An address latch 130 is provided with each quadrant

120a-d, to store the address from the bus 101 corresponding

6

the next quadrant's instruction latch 220 already contains the
next set of instructions relative to the addressed instruction,
from a prior access to the addressed quadrant and segment,
the above pre-fetch process is avoided.

In a typical flow of sequential instructions and short loops,
the "steady state" condition of the set of instruction latches
220 will be such that one latch contains the currently
accessed instruction, and at least one latch contains the
contents of the next sequential set of instructions, and the

to the requested instruction address, to allow pipelined
address generation on the bus. In the example of a four­
quadrant partitioning, with each quadrant containing four 5

words, or sixteen bytes, the lower four bits of the address,
A[3:0], correspond to the sixteen bytes; the next upper two
bits of the address, A[5:4], correspond to the particular
quadrant; and the remaining upper bits, A[M:6], where M is
the size of the address, correspond to the particular segment

10 remaining latches will contain instructions prior to the
currently accessed instruction. In the example embodiment
of FIG. 2, wherein the latches 220 are configured to contain
up to sixteen instructions, if a program loop comprises no
more than nine instructions, it will be guaranteed to be
contained in the set of instruction latches 220 after its first

of four sets of four words each. In the ARM example, the
size of the address is 18-bits wide, and the segment address
corresponds to A[l 7:6]. This is the address that is stored in
the address latch 130 of the addressed quadrant 120a-d. The
quadrant address A[5:4] is used to enable the latch corre­
sponding to the addressed quadrant. When the addressed set
of four words, A[17:4], is loaded into the corresponding
address latch 130, the segment address, A[l 7:6] is loaded
into an Instruction Address Latch (IAL) 210 that corre­
sponds to the address latch 130. The quadrant addressA[5:4]
enables the appropriate instruction latch 220 and instruction
address latch 210 to receive the instruction and segment
address, respectively.

When an instruction at an address A[l 7:2] is requested by
the processor 110, the contents of the corresponding IAL 210
(as addressed by A[5:4]) is compared to the requested
segment address A[17:6], as illustrated by the diamond
shaped decision block 240 in FIG. 2. If the stored segment
address in the IAL210 corresponds to the requested segment
address, the contents of the corresponding instruction latch
220 is provided to the word multiplexer 230. The lower
order bits of the instruction address, A[3:2], are used to
select the particular instruction within the set of four words
that are stored in the instruction latch 220. The output of the
addressed word multiplexer 230 is selected via the quadrant
multiplexer 250, and placed on the bus 101. Other multi­
plexing and selection schemes will be evident to one of
ordinary skill in the art. If the stored segment address in the
IAL 210 does not correspond to the requested segment
address, the requested segment is first loaded into the
instruction latch 220 from the memory 120, and the loaded
segment's address is loaded into the IAL 210, and the
contents of the latch 220 is selected for placement on the bus
101 as detailed above.

In accordance with this invention, when an instruction in
one quadrant (120a,b,c,d) is accessed, the instructions in the
next cyclically-sequential quadrant (120b, c, d, a) are auto­
matically loaded, or pre-fetched, into the corresponding
latch 220, in anticipation of a subsequent access to these
instructions. As discussed above, the number of words, N,
per quadrant for each segment is preferably chosen such that
the execution of N instructions by the processor 110 con­
sumes more time than the pre-fetching of the next quadrant's
instructions from the memory 120, so that the appropriate
instructions are contained in the next cyclically-sequential
instruction latch 220 when the processor 110 progresses
sequentially to these instructions. In this manner, continuous
sequential portions of a program will be executed without
incurring memory access delays, other than the initial delay
to access the first set of N instructions. Alternatively viewed,
slower, and less expensive, memory 120 can be employed in
a system by increasing the width, N, of the quadrants.

15 iteration, regardless of the location of the loop relative to the
boundaries of the quadrants. Similarly, if the loop contains
more than twelve instructions, it is guaranteed not to be
contained in the set of instructions 220, because at least four
instructions after the end of the loop will be loaded in the

20 latches 220 when the end of the loop is executed during the
first iteration. If the loop contains ten to twelve instructions,
it may or may not be totally contained in the latches 220,
based upon the location of the loop relative to the boundaries
between quadrants. Thus, except for loops of ten to twelve

25 instructions, the time required to execute the loop, based on
memory access time, can be determined without regard to
the actual location of the loop in the memory 120. For loops
of ten to twelve instructions, the time required to execute the
loop will also be determinable, but only after the program is

30 allocated to specific memory locations. Alternatively
viewed, the number of partitions of memory, or the number
of instructions, N, per partition width can be adjusted so as
to provide effective performance for particular anticipated
loop sizes.

35
Because the performance of each loop, other than those of

ten to twelve instructions in length, is solely dependent upon
the size of the loop, the user can purposely structure critical
loops to be nine instructions or fewer. Similarly, if the loop
cannot be effected within twelve instructions, the user can
purposely determine whether the loop will satisfy its time

40 constraints, with the knowledge that memory access delays
will definitely be incurred within the loop. The performance
of loops of ten to twelve instructions can similarly be
determined, albeit after the loop is allocated to memory, or
to virtual blocks of memory having a known correspondence

45 to the boundaries of the memory quadrants 120a-d. It is
significant to note that the maximum number of memory
access delays per loop, regardless of size, is one. For loops
less of less than nine instructions, and some loops of size ten
to twelve instructions, the number of access delays per loop

50 is zero, for all other loops, the number of access delays per
loop is one. Thus, the worst case performance occurs for
loops of thirteen instructions; as the size of the loop
increases, the automatic sequential prefetch continually
eliminates memory access delays, thereby improving the
overall memory access efficiency, compared to a loop of

55
thirteen instructions.

As illustrated in FIG. 2, a pre-fetch incrementer 260 is 60

provided to facilitate the prefetch of instructions from the
first quadrant 120a when the last quadrant 120d is the
addressed quadrant, thereby effecting the cyclically­
sequential access to the "next" quadrant when the last
quadrant is accessed. For accesses to other than the last 65

quadrant, the segment number of the instructions in the next
quadrant is the same as the currently addressed segment. If

In accordance with another aspect of this invention, the
degree of acceleration provided by the memory accelerator
200 can be controlled, thereby increasing the deterministic
nature of the program as required. In this embodiment, the
latches 220 are selectively configurable to effect all, or some,
or none, of the aforementioned memory access optimiza­
tions. The automatic prefetch is independently controllable,
as is the checking to determine whether the requested
instruction is already contained in the latch 220. An addi­
tional access mode also forces a read from the memory 120
whenever a non-sequential sequence of program instructions
is encountered. That is, in this alternative access mode, the

US 6,799,264 B2

7

execution of a branch instruction necessarily invokes a
memory access delay. Each of these options is provided to
allow a tradeoff between determinism and performance, and
will be dependent upon the balance between determinism
and performance that is selected by the user. In a preferred 5

embodiment, an application program is provided that con­
verts user selections into the appropriate configuration set­
tings or commands.

The foregoing merely illustrates the principles of the
invention. It will thus be appreciated that those skilled in the 10

art will be able to devise various arrangements which,
although not explicitly described or shown herein, embody
the principles of the invention and are thus within its spirit
and scope. For example, a parallel set of latches 210 and 220
can be configured to provide accelerated memory access for 15
data that is contained in the memory 120. Access to the data
is preferably segregated from the access to program
instructions, to prevent thrashing when an instruction in the
memory 120 contains a reference to a data item that is also
in the memory 120. In lieu of providing four sets of

20
data-address and data latches, and in lieu of automatically
prefetching data from the next sequential series of data, one
data-address and data latch can be provided, to merely buffer
the currently accessed quadrant. This reduces the resources
required to buffer accesses to data items, but does not
provide the data access delay reductions that could be 25

achieved when data in the memory is accessed substantially
consecutively, or repeatedly. In like manner, a parallel set of
latches 210 and 220 may also be provided for accessing a
different class, or type, of memory. For example, if the
system comprises both internal and external memory, an 30

independent set of latches may be provided for each, each
set of latches being configured based on the performance
and capabilities of the particular type of memory being
accelerated, such as via the use of wider registers for slower
memory, and so on. These and other system configuration 35

and optimization features will be evident to one of ordinary
skill in the art in view of this disclosure, and are included
within the scope of the following claims.

What is claimed is:
1. A computer system comprising:

a processor that is configured to execute the program
instructions that are contained in a memory; and

a memory access system that includes:

40

a plurality of instruction latches, each instruction latch
45

of the plurality of instruction latches being associ­
ated with a corresponding partition of a plurality of
cyclically sequential partitions of the memory;

wherein

the memory access system is configured to 50

co-temporaneously:
determine whether an instruction addressed by the

processor is contained in a first instruction latch of
the plurality of instruction latches, based on an
identification of the partition of the memory corre- 55

sponding to the addressed instruction,
load a first plurality of instructions, including the

addressed instruction, from the memory and into the
first instruction latch, if the addressed instruction is
not in the first instruction latch, and 60

load a second plurality of instructions from the memory
and into a second instruction latch of the plurality of
instruction latches, if the second plurality of instruc­
tions is not in the second instruction latch,

so that the first and second plurality of items are 65

available for direct access by the processor from the
corresponding first and second instruction latches.

8

2. The computer system of claim 1, further including

a plurality of address latches corresponding to the plural­
ity of instruction latches, and wherein

the memory access system is further configured to store a
segment identifier associated with each plurality of
instructions that is loaded into each instruction latch
into a corresponding address latch of the plurality of
address latches.

3. The computer system of claim 2, wherein

the addressed instruction is addressed by an address that
includes, as discrete bit-fields: the segment identifier,
the identification of the partition of the memory, and a
word identifier, and

the word identifier identifies a location in the first instruc­
tion latch corresponding to the addressed instruction.

4. The computer system of claim 3, wherein
the memory access system is configured to determine

whether the addressed instruction is contained in the
first instruction latch by comparing the segment iden­
tifier of the addressed instruction to the segment iden­
tifier that is stored in the address latch associated with
the first instruction latch.

5. The computer system of claim 1, further including the
memory.

6. The computer system of claim 1, wherein the processor
is an ARM processor.

7. The computer system of claim 1, wherein
the first and second plurality of instructions contain a

same number of instructions, and
the number of instructions is determined based on an

execution time of the processor to execute the number
of instructions and an access time to effect the load of
the sets of instructions.

8. The computer system of claim 1, wherein
the memory access system is also configured to allow a

selective disabling of the load of the second plurality of
instructions from the memory.

9. The computer system of claim 1, wherein
the memory access system further comprises a plurality of

data latches, and

the memory access system is further configured to:
determine whether a data item addressed by the pro­

cessor is contained in a data latch of the plurality of
data latches, and

load a first plurality of data items, including the
addressed data item, from the memory and into the
first data latch, if the addressed data item is not in the
data latch.

10. The computer system of claim 9, wherein
the memory access system is further configured to:

load a second plurality of data items from the memory
and into a second data latch of the plurality of data
latches, if the second plurality of data items is not in
the second data latch,

so that the first and second plurality of data items are
available for direct access by the processor from the
corresponding first and second data latches.

11. A microcontroller comprising:
a memory that is configured to store program instructions,

a processor that is configured to execute the program
instructions that are stored in the memory, and

a memory accelerator, operably coupled between the
processor and the memory, that is configured to receive
select program instructions from the memory and to
provide an addressed instruction of the select program
instructions to the processor; wherein

US 6,799,264 B2
9

the memory and the memory accelerator are operably
coupled to each other via a plurality of access paths,
and

the memory accelerator is configured
to receive a first set of instructions from the memory via 5

a first access path of the plurality of access paths,
based on an instruction address that is provided by
the processor corresponding to the addressed
instruction, and

to receive a second set of instructions from the memory 10

via a second access path of the plurality of access
paths,
the second set of instructions having addresses that

are sequential to addresses of the first set of
instructions, and

to provide the addressed instruction and subsequent
instructions to the processor from the first and sec­
ond set of instructions contained in the memory
accelerator, wherein the memory accelerator
includes:

a plurality of instruction latches corresponding to the
plurality of access paths, including a first instruction
latch that receives the first set of instructions, and a
second instruction latch that receives the second set of
instructions,

a plurality of address latches corresponding to the plural­
ity of instruction latches, each address latch of the

15

20

25

10

plurality of address latches being configured to store an
address associated with the set of instructions stored in
the corresponding instruction latch, wherein

the memory accelerator is configured to compare the
address associated with the set of instructions stored in
the corresponding instruction latch to the instruction
address that is provided by the processor, to forego
receiving the first set of instructions from the memory
when the corresponding instruction latch contains the
addressed instruction.

12. The microcontroller of claim 11, wherein

each instruction latch is configured to contain four
sequentially addressed instructions.

13. The microcontroller of claim 11, further including;

a plurality of word multiplexers corresponding to the
plurality of instruction latches that are each configured
to select an instruction from the set of instructions
stored in the instruction latch, based on a word address
contained within the instruction address, and

a partition multiplexer operably coupled to each of the
plurality of word multiplexers that is configured to
select the instruction selected by a particular word
multiplexer, based on a partition address that is con­
tained within the instruction address.

* * * * *

